Advanced Topics in Random Graphs
 Exercise Sheet 2

Question 1. Let G be a graph with ϵn^{2} edges for some $\epsilon>0$. Using the dependent random choice lemma from the lectures, show that G contains a 1-division of K_{p} for some $p=\epsilon^{\frac{3}{2}} n^{\frac{1}{2}}$.
(*Improve the above to $p=\epsilon n^{\frac{1}{2}}$ and show that this is sharp.)

Question 2. Let G be the graph with $V(G)=\{0,1\}^{m}$ where x and y are adjacent if they differ in more than $\frac{m}{2}$ coordinates and let $\epsilon>0$ be a positive constant.

Show that there is no set $U \subset V$ with $|U| \geq \epsilon|V|$ such that every pair of vertices in U has $\geq \epsilon n$ many common neighbours.
(You may assume that every set of size $|U| \geq \sum_{i=1}^{t}\binom{m}{i}$ contains two points differing in at least $2 t+1$ coordinates)

Question 3. Let $\epsilon>0$ be a positive constant and $r \leq n$ be integers. Suppose G is a graph on $N>4 r \epsilon^{-r} n$ vertices which has at least $\epsilon \frac{N}{2}$ edges. Show that there is a subset $U \subseteq V(G)$ of size $|U|>2 n$ such that the number of subsets $S \subset U$ with $|S|=r$ and less than n common neighbours is at most

$$
\frac{1}{(2 r)^{r}}\binom{|U|}{r} .
$$

Question 4. Let H be a bipartite graph with maximum degree r. Show that if G contains a subset U satisfying the conclusion of Question 3, then G contains a copy of H.
(Hint : Call sets $S \subseteq U$ good if they are contained in the right number of sets of size d with at least n common neighbours. Try to embed the graph so that the neighbourhoods of the vertices in the right partition class are always good)

Question 5. Suppose that H is bipartite on n vertices and has maximum degree r. Show that the Ramsey number of H is at most $r 2^{r+3} n$.

